library("tidyverse")
library("quanteda")
library("lubridate")
library("stopwords")
library("tidytext")
library("wordcloud2")
library("cowplot")
library("stringi")
library("igraph")
library("ggraph")
teyit <- read_csv("C:/Users/Sadettin/Downloads/twitdata/teyit.csv")
dpayi <- read_csv("C:/Users/Sadettin/Downloads/twitdata/dogruluk2.csv")
evrimag <- read_csv("C:/Users/Sadettin/Downloads/twitdata/evrima.csv")
malumatf <- read_csv("C:/Users/Sadettin/Downloads/twitdata/malumatf.csv")
yalansav <- read_csv("C:/Users/Sadettin/Downloads/twitdata/yalansav.csv")
gununyalani <- read_csv("C:/Users/Sadettin/Downloads/twitdata/gununytw.csv")
dogrusune <- read_csv("C:/Users/Sadettin/Downloads/twitdata/dogrusunetrttw.csv")
#factchecktr <- read_csv("C:/Users/Sadettin/Downloads/twitdata/factchtr.csv")
dpayi$tweet <- stri_trans_general(dpayi$tweet, id="Latin-ASCII")
teyit$tweet <- stri_trans_general(teyit$tweet, id = "Latin-ASCII")
evrimag$tweet <- stri_trans_general(evrimag$tweet, id = "Latin-ASCII")
malumatf$tweet <- stri_trans_general(malumatf$tweet, id = "Latin-ASCII")
yalansav$tweet <- stri_trans_general(yalansav$tweet, id = "Latin-ASCII")
gununyalani$tweet <- stri_trans_general(gununyalani$tweet, id = "Latin-ASCII")
dogrusune$tweet <- stri_trans_general(dogrusune$tweet, id = "Latin-ASCII")
#factchecktr$tweet <- stri_trans_general(factchecktr$tweet, id = "Latin-ASCII")
custom stopwords lists
custom_stopwords <- c("https","teyit.org","pic.twitter.com","http","i","mi","v","e","twitter.com","t","eepurl.com","ii","iii","youtu.be","open.spotify.com","the","u","www.youtube.com","www.dogrulukpayi.com","dogrulukpayı","doğrulukpayı","c278f7a17463ce4aaa5a39b20","fb.me","evrimagaci.org","utm_source","utm_campaign","utm_medium","www.evrimagaci.org","icin","watch","to","new","d","a","yalansavar.org","yalansavar","cok","po.st","rt","in","via","www.malumatfurus.org","malumatfurusorg","archive.is","malumatfurus","gununyalanlari.com","teyitorg","ow.ly","te","nin","www.facebook.com","events","den","556632e33ced8","photo","tr","www.patreon.com", "evrimagaci","evrimagaci","status","wp.me","p1ufar","as","en.m.wikipedia.org","isil_arican","tevfik_uyar","c4","b1","agaci","ağaci","twitter","dogrulukpayi","destek.teyit.org","557dce70d4","izlemedeyiz.us6","dahdlx","_milkivey","dlvr.it","buff.ly","gununyalanlari","d8","iddiası","iddiasi","degil","oldugu","social","oldugunu","sitemizden","dogruluk","subscribe","list","manage.com","gore")
one_words <- function(x){
x%>% select(tweet) %>% filter(!str_detect(tweet, '^"'),!str_detect(tweet,"^'")) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", ""))%>%
unnest_tokens(word, tweet) %>%
filter(!word %in% stopwords("turkish", source = "stopwords-iso"), !word %in%
custom_stopwords,str_detect(word, "[a-z]")) %>% count(word, sort = TRUE)
}
two_words <- function(x){
x %>% select(tweet) %>% filter(!str_detect(tweet, '^"')) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", "")) %>%
unnest_tokens(bigram, tweet, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stopwords("turkish", source = "stopwords-iso"),!word1 %in% custom_stopwords,str_detect(word1, "[a-z]")) %>%
filter(!word2 %in% stopwords("turkish", source = "stopwords-iso"),!word2 %in% custom_stopwords,str_detect(word2, "[a-z]")) %>%
unite(bigram,word1, word2, sep = " ")%>%
count(bigram, sort = TRUE)
}
three_words <- function(x){
x %>% select(tweet) %>% filter(!str_detect(tweet, '^"')) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", "")) %>%
unnest_tokens(trigram, tweet, token = "ngrams", n = 3) %>%
separate(trigram, c("word1", "word2","word3"), sep = " ") %>%
filter(!word1 %in% stopwords("turkish", source = "stopwords-iso"),!word1 %in% custom_stopwords,str_detect(word1, "[a-z]")) %>%
filter(!word2 %in% stopwords("turkish", source = "stopwords-iso"),!word2 %in% custom_stopwords,str_detect(word2, "[a-z]")) %>%
filter(!word3 %in% stopwords("turkish", source = "stopwords-iso"),!word3 %in% custom_stopwords,str_detect(word3, "[a-z]")) %>%
unite(trigram, word1, word2,word3, sep = " ")%>%
count(trigram, sort = TRUE)
}
ONE WORD
Let’s look at the data first
one_words(teyit)
## # A tibble: 22,220 x 2
## word n
## <chr> <int>
## 1 dogru 1514
## 2 gosterdigi 835
## 3 merhaba 819
## 4 yanlis 660
## 5 tesekkurler 556
## 6 iddia 472
## 7 fotografin 465
## 8 fotograf 417
## 9 yeni 371
## 10 video 361
## # ... with 22,210 more rows
WORDCLOUDS for ONE WORDS
wordcloud of one word for teyit
teyit_cloud <- one_words(teyit) %>% top_n(200,n)
wordcloud2(data = teyit_cloud,
fontFamily ="Poppins",
minRotation = -pi/6,
maxRotation = -pi/6,
rotateRatio = 1.5,
size = 1.5)
Most Frequent Words
teyit_viz <- one_words(teyit) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#6a51a3")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,1700)
dp_viz <- one_words(dpayi) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#fc4e2a")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,4200)
malumat_viz <- one_words(malumatf) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#4292c6")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,800)
evrimag_viz <- one_words(evrimag) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#41ab5d")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,5000)
yalansav_viz <- one_words(yalansav) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#fec44f")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,300)
gy_viz <- one_words(gununyalani) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(word, n),n))+
geom_col(fill ="#dd3497")+
coord_flip()+
geom_text(aes(x = word, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,2600)
plot_grid(teyit_viz, dp_viz,malumat_viz,evrimag_viz,yalansav_viz,gy_viz, labels = c("Teyit", "D.Payı","Malumatfuruş","Evrim Ağacı","Yalansavar","Günün Yalanları"),ncol = 3,label_fontfamily = "Poppins")
#Saving 15 x 9.24 in image
TWO WORDS - BIGRAMS
Now let’s look at bigrams (two words (söz öbeği) to contextualize our findings a bit more
two_words(teyit)
## # A tibble: 46,500 x 2
## bigram n
## <chr> <int>
## 1 sosyal medyada 194
## 2 yanlis bilgi 193
## 3 haftanin dogrulari 183
## 4 soz konusu 169
## 5 dogrulari yanlislari 166
## 6 iddia edilen 160
## 7 gecen haftanin 114
## 8 tesekkurler merhaba 102
## 9 iddiasiyla paylasilan 99
## 10 erisebilirsiniz ilginiz 93
## # ... with 46,490 more rows
WORDCLOUDS for BIGRAMS
bigram wordcloud for teyit
teyit_obek_cloud <- two_words(teyit) %>% top_n(200,n)
wordcloud2(data = teyit_obek_cloud,
fontFamily ="Poppins",
minRotation = -pi/6,
maxRotation = -pi/6,
rotateRatio = 1.5,
size = 1.5)
Most Frequent Bigrams
teyit_viz2 <- two_words(teyit) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#6a51a3")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,250)
dp_viz2 <- two_words(dpayi) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#fc4e2a")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,1300)
malumat_viz2 <- two_words(malumatf) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#4292c6")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,450)
evrimag_viz2 <- two_words(evrimag) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#41ab5d")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,600)
yalansav2_viz <- two_words(yalansav) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#fec44f")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,150)
gy_viz2 <- two_words(gununyalani) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(bigram, n),n))+
geom_col(fill ="#e7298a")+
coord_flip()+
geom_text(aes(x = bigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,450)
plot_grid(teyit_viz2, dp_viz2,malumat_viz2,evrimag_viz2, yalansav2_viz,gy_viz2, ncol = 3, labels = c('Teyit bigram', 'D.Payı bigram',"Malumatfuruş bigram","Evrim ağacı bigram","Yalansavar bigram","Günün yalanları bigram"),label_fontfamily = "Poppins")
THREE WORDS - TRIGRAM
three_words(dpayi)
## # A tibble: 35,847 x 2
## trigram n
## <chr> <int>
## 1 recep tayyip erdogan 180
## 2 kisi basina dusen 163
## 3 iddia kontrolu recep 160
## 4 kontrolu recep tayyip 156
## 5 sirada yer aliyor 147
## 6 surec nasil ilerliyor 108
## 7 gundemine neler girdi 107
## 8 neler girdi gelin 107
## 9 payi'nin gundemine neler 107
## 10 adresini ziyaret edebilirsiniz 104
## # ... with 35,837 more rows
teyit_viz3 <- three_words(teyit) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#6a51a3")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,180)
dp_viz3 <- three_words(dpayi) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#fc4e2a")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,200)
malumat_viz3 <- three_words(malumatf) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#4292c6")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,70)
evrimag_viz3 <- three_words(evrimag) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#41ab5d")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,100)
yalansav_viz3 <- three_words(yalansav) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#fec44f")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,25)
gy_viz3 <- three_words(gununyalani) %>% top_n(20,n) %>%
ggplot(aes(fct_reorder(trigram, n),n))+
geom_col(fill ="#e7298a")+
coord_flip()+
geom_text(aes(x = trigram, y = n,label = n),check_overlap = TRUE, hjust = -0.2,size = 3.7,color= "gray25")+
labs(x="",y="",title ="")+
theme_poppins()+ylim(0,300)
plot_grid(teyit_viz3, dp_viz3,malumat_viz3,evrimag_viz3, yalansav_viz3,gy_viz3, ncol = 3, labels = c('Teyit trigram', 'D.Payı trigram',"Malumatfuruş trigram","Evrim ağacı trigram","Yalansavar trigram","Günün yalanları trigram"),label_fontfamily = "Poppins")
What is tf_idf? (click here)
one_words_tfidf <- function(x){
x%>% select(name,tweet) %>% filter(!str_detect(tweet, '^"'),!str_detect(tweet,"^'")) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", ""))%>%
unnest_tokens(word, tweet) %>%
filter(!word %in% stopwords("turkish", source = "stopwords-iso"), !word %in%
custom_stopwords,str_detect(word, "[a-z]")) %>% count(name,word, sort = TRUE)
}
all_data <- bind_rows(dpayi, teyit,evrimag,yalansav,gununyalani,malumatf)
tf_idf_tweets <- all_data %>% one_words_tfidf() %>% bind_tf_idf(word,name,n)
tf_idf_tweets %>% arrange(desc(tf_idf))
## # A tibble: 186,492 x 6
## name word n tf idf tf_idf
## <chr> <chr> <int> <dbl> <dbl> <dbl>
## 1 Dogruluk Payi beyanat 3863 0.0235 1.79 0.0422
## 2 Günün Yalanlari yalani 2292 0.0215 0.405 0.00871
## 3 Dogruluk Payi bulten 3116 0.0190 0.405 0.00770
## 4 Günün Yalanlari carpitmasi 572 0.00536 1.10 0.00589
## 5 Yalansavar tam2013 123 0.00267 1.79 0.00479
## 6 Yalansavar tam2014 77 0.00167 1.79 0.00300
## 7 Malumatfurus yanlislama 217 0.00214 1.10 0.00235
## 8 Günün Yalanlari afrinoperasyonu 138 0.00129 1.79 0.00232
## 9 Teyit coronavirusfacts 125 0.00127 1.79 0.00228
## 10 Evrim Agaci evrimi 748 0.00185 1.10 0.00204
## # ... with 186,482 more rows
tf_idf chart
tf_idf_tweets %>% arrange(desc(tf_idf)) %>%
mutate(word = factor(word, levels = rev(unique(word)))) %>%
group_by(name) %>%
top_n(15) %>%
ungroup() %>%
ggplot(aes(word, tf_idf, fill = name)) +
geom_col(show.legend = FALSE) +
labs(x = NULL, y = "tf-idf") +
facet_wrap(~name, ncol = 2, scales = "free") +
coord_flip()+theme_poppins()
easy way through functions
ag_ggraph <- function(x,b){
set.seed(123)
a <- grid::arrow(type = "closed", length = unit(0.1, "inches"))
x %>% select(tweet) %>% filter(!str_detect(tweet, '^"')) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", "")) %>%
unnest_tokens(bigram, tweet, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stopwords("turkish", source = "stopwords-iso"),!word1 %in% custom_stopwords,str_detect(word1, "[a-z]")) %>%
filter(!word2 %in% stopwords("turkish", source = "stopwords-iso"),!word2 %in% custom_stopwords,str_detect(word2, "[a-z]")) %>%
count(word1, word2, sort = TRUE)%>%
filter(n >30) %>%
graph_from_data_frame() %>%
ggraph(layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
arrow = a, end_cap = circle(.07, 'inches')) +
geom_node_point(color =b, size = 3) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()
}
ag_ggraph(dpayi,"lightblue")
the time-consuming way
bigrams_count <- function(x){
x %>% select(tweet) %>% filter(!str_detect(tweet, '^"')) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", "")) %>%
unnest_tokens(bigram, tweet, token = "ngrams", n = 2) %>%
separate(bigram, c("word1", "word2"), sep = " ") %>%
filter(!word1 %in% stopwords("turkish", source = "stopwords-iso"),!word1 %in% custom_stopwords,str_detect(word1, "[a-z]")) %>%
filter(!word2 %in% stopwords("turkish", source = "stopwords-iso"),!word2 %in% custom_stopwords,str_detect(word2, "[a-z]")) %>%
count(word1, word2, sort = TRUE)
}
dpayi_bigram <- bigrams_count(dpayi)
dpayi_bigram
## # A tibble: 42,840 x 3
## word1 word2 n
## <chr> <chr> <int>
## 1 iddia kontrolu 1070
## 2 bulten turkiye 334
## 3 ak parti 279
## 4 tesekkur ederiz 267
## 5 yer aliyor 254
## 6 sirada yer 227
## 7 recep tayyip 224
## 8 basina dusen 211
## 9 tayyip erdogan 181
## 10 kisi basina 179
## # ... with 42,830 more rows
bigram_graph <- dpayi_bigram %>%
filter(n > 40) %>%
graph_from_data_frame()
bigram_graph
## IGRAPH 4d69294 DN-- 160 125 --
## + attr: name (v/c), n (e/n)
## + edges from 4d69294 (vertex names):
## [1] iddia ->kontrolu bulten ->turkiye
## [3] ak ->parti tesekkur ->ederiz
## [5] yer ->aliyor sirada ->yer
## [7] recep ->tayyip basina ->dusen
## [9] tayyip ->erdogan kisi ->basina
## [11] kontrolu ->recep analiz ->edilen
## [13] fact ->checking takip ->edebilirsiniz
## [15] ulke ->arasinda analiz ->ettik
## + ... omitted several edges
set.seed(123)
a <- grid::arrow(type = "closed", length = unit(0.1, "inches"))
ggraph(bigram_graph, layout = "fr") +
geom_edge_link(aes(edge_alpha = n), show.legend = FALSE,
arrow = a, end_cap = circle(.07, 'inches')) +
geom_node_point(color = "lightblue", size = 3) +
geom_node_text(aes(label = name), vjust = 1, hjust = 1) +
theme_void()
knitr::include_graphics("images/dp_bigram_network.png")
library(stm)
## stm v1.3.5 successfully loaded. See ?stm for help.
## Papers, resources, and other materials at structuraltopicmodel.com
oneword_stm <- function(x){
x%>% select(username, tweet) %>% filter(!str_detect(tweet, '^"'),!str_detect(tweet,"^'")) %>%
mutate(tweet = str_replace_all(tweet, "https://t.co/[A-Za-z\\d]+|&", ""))%>%
unnest_tokens(word, tweet) %>%
filter(!word %in% stopwords("turkish", source = "stopwords-iso"), !word %in%
custom_stopwords,str_detect(word, "[a-z]")) %>% count(username,word, sort = TRUE)
}
datastm <- oneword_stm(tweet_data) %>% filter(!username =="dogrusunetrt")
datastm
## # A tibble: 186,492 x 3
## username word n
## <chr> <chr> <int>
## 1 evrimagaci evrim 4272
## 2 dogrulukpayicom beyanat 3863
## 3 dogrulukpayicom bulten 3116
## 4 evrimagaci nasil 2387
## 5 gununyalanlari yalani 2292
## 6 dogrulukpayicom turkiye 2290
## 7 gununyalanlari yalan 2230
## 8 evrimagaci bilim 1939
## 9 evrimagaci nedir 1771
## 10 evrimagaci okumak 1762
## # ... with 186,482 more rows
fc_dfm <- datastm %>%
cast_dfm(username, word, n)
fc_dfm
## Document-feature matrix of: 6 documents, 131,815 features (76.4% sparse).
## features
## docs evrim beyanat bulten nasil yalani turkiye yalan bilim nedir
## evrimagaci 4272 0 1 2387 12 357 111 1939 1771
## dogrulukpayicom 7 3863 3116 288 0 2290 6 2 88
## gununyalanlari 1 0 0 45 2292 337 2230 9 2
## teyitorg 0 0 14 248 0 144 103 46 14
## malumatfurusorg 8 0 3 59 3 142 64 30 19
## yalansavar 12 0 0 138 8 3 56 180 36
## features
## docs okumak
## evrimagaci 1762
## dogrulukpayicom 66
## gununyalanlari 0
## teyitorg 23
## malumatfurusorg 2
## yalansavar 3
## [ reached max_nfeat ... 131,805 more features ]
topic_model <- stm(fc_dfm, K = 10,
verbose = FALSE, init.type = "Spectral")
summary(topic_model)
## A topic model with 10 topics, 6 documents and a 131815 word dictionary.
## Topic 1 Top Words:
## Highest Prob: beyanat, bulten, turkiye, turkiye'de, iddia, sayisi, kontrolu
## FREX: beyanat, hukumetre, dp60saniye, mv, mailchi.mp, ahmet_davutoglu, bultenlerini
## Lift: 0ks7jtupak0, 10aralikdunyainsanhaklarigunu, 13bow7v, 1bjf9ne, 1fnoll6, 3amp1ublvky, 5487fbbbcc2e9
## Score: beyanat, bulten, payi'nin, hukumetre, chp, dp60saniye, ihracat
## Topic 2 Top Words:
## Highest Prob: yalani, yalan, dogru, carpitmasi, tarafindan, iddiasiyla, servis
## FREX: afrinoperasyonu, gundem'in, yandaslari, kiraz, sozcunun, eymur, kirca
## Lift: 10ar, 10rzclpcnk2rjlw067_8aw, 15temmuzuanlat, 2016yalanlari, 22_11_2017_suriye_gbm_bilgi_notu.pdf, abden, acikkollu'nun
## Score: yalani, carpitmasi, afrinoperasyonu, cumhuriyet'in, yalan, iddiasiyla, yalanladi
## Topic 3 Top Words:
## Highest Prob: dogru, gosterdigi, merhaba, yanlis, tesekkurler, iddia, fotografin
## FREX: coronavirusfacts, desteklediginiz, ilgin, kutunuzda, teyitlendin, teyitciyi, teyitpedia
## Lift: 021243accdd8, 0iwzw46xo3cyaypkaksfw1, 0kbco73nlfbjtudoctbr3o, 0mblwhastge, 0vdpjnrlc3hrj2wohoypcn, 16lara, 1789da
## Score: gosterdigi, merhaba, coronavirusfacts, yayimladigimiz, ilginiz, fotografin, tesekkurler
## Topic 4 Top Words:
## Highest Prob: evrim, nasil, okumak, nedir, bilim, insan, fotograf
## FREX: evrimin, posted, secilim, evrimlesti, dar.vin, boyda, cmb
## Lift: 23andme, posted, evrimin, secilim, evrimlesti, dar.vin, boyda
## Score: evrim, evrimi, evrimsel, evrimin, okumak, posted, covid19
## Topic 5 Top Words:
## Highest Prob: kose, dogru, yazarlari, yanlis, dogrulama, koronavirus, iddia
## FREX: tarihtebugun, aktarmis, kosemenler, keciboynuzu, hazar, ozdil, padisah
## Lift: __tn__, _aamirkhan, _devapartisi, _e2r2volqva, _ilkeli_, _nediyoyabu_, _notallthosewho'ye
## Score: kose, yanlislama, yazarlari, tarihtebugun, aktarmis, dogrulama, kosemenler
## Topic 6 Top Words:
## Highest Prob: yeni, bilim, nasil, su, son, dogru, bilimsel
## FREX: derisini, desenleri, desteklediklerimiz, dibinde, dinozorlari, donukluk, dostumdur
## Lift: astral, gezegenlerden, paranormal, anneleri, aman, cocukluk, nye
## Score: kacirmayin, yazi, tesekkurler, makale, mesela, p, bilimin
## Topic 7 Top Words:
## Highest Prob: tartisirken, yeni, bilim, nasil, su, yazi, bilimsel
## FREX: tartisirken, yazi, anlatiyor, cogu, mesela, tip, yazdi
## Lift: tartisirken, bods, pekcok, skeptik, shermer, novella, derkenar
## Score: tartisirken, tam2013, tam2014, sbasegmez, mkozturk, yazi, sozdebilim
## Topic 8 Top Words:
## Highest Prob: animsayalim, yeni, bilim, nasil, yazi, su, bilimsel
## FREX: animsayalim, tam2013, yazdi, tam2014, mkozturk, sbasegmez, homeopati
## Lift: animsayalim, ___ceka___, _burkmez, _burkmez'den, _burkmez'in, _dwqflaibxy, _encoding
## Score: animsayalim, tam2013, tam2014, sbasegmez, mkozturk, sozdebilim, csicon
## Topic 9 Top Words:
## Highest Prob: tivit, yeni, bilim, nasil, yazi, su, bilimsel
## FREX: tivit, tam2013, yazdi, tam2014, mkozturk, sbasegmez, homeopati
## Lift: tivit, ___ceka___, _burkmez, _burkmez'den, _dwqflaibxy, _encoding, _i_d
## Score: tivit, tam2013, tam2014, sbasegmez, mkozturk, sozdebilim, csicon
## Topic 10 Top Words:
## Highest Prob: yeni, bilim, nasil, yazi, tam2013, yazdi, su
## FREX: tam2013, tam2014, yazdi, mkozturk, sbasegmez, homeopati, elestirel
## Lift: tumertopal, 3balfx, 5b, 7b, 7d, affedin, arsenicum
## Score: tam2013, tam2014, sbasegmez, mkozturk, sozdebilim, csicon, burkmez
td_beta <- tidy(topic_model)
## Warning: `tbl_df()` is deprecated as of dplyr 1.0.0.
## Please use `tibble::as_tibble()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.